
Fast mergesort implementation based on
half-copying merge algorithm

Cezary Juszczak
Institute for Theoretical Physics
University of Wroc law, Poland

April 18, 2007

Abstract

An efficient implementation of mergesort is presented in both
copying and in-place versions. It is based on a fast half-copying merge
algorithm. The presented mergesort C++ implementation is only
20% slower than quicksort and about 50% faster than the current
STL stable sort implementation using only half as much memory.
It seems a very good candidate for inclusion in the standard STL
implemention.

1

Introduction

The mergesort algorithm is one of the most efficient algorithms for sorting
data. It was originally used for sorting large data files but can also be used
for sorting in memory arrays and lists. When used for sorting lists it has a
constant memory demand, but requires an additional memory buffer of size
O(n) when used for sorting arrays. It boasts a guranteed O(n log n) run time
and is stable.

The subject of this paper is to describe a fast mergesort implementation
such that the memory demand is n/2 and the real life speed of the C++
implementation is comparable to a quicksort implementation.

1 Mergesort

A typical mergesort implementation can be described as follows:

mergesort(A)

allocate(B)

mergesort(A1)

mergesort(A2)

merge(A1,A2,B)

copy(B,A)

where A1 and A2 are left and right halves of the array A.
The pure copying in the last line can be avoided if the copying mergesort

is used.

mergesort(A)

allocate(B)

copying_mergesort(A1,B1)

copying_mergesort(A2,B2)

merge(B1,B2,A)

The copying mergesort is impelemented by means of the mergesort:

copying_mergesort(A,B)

mergesort(A1)

mergesort(A2)

merge(A1,A2,B)

In the above the array B may be used as the mergesort buffer so there is
no need for additional memory allocation.

1

2 Half copying merge

Note that in both cases the merge function merges two sorted halves od one
array into one other array which is made clear by the notation:

merge(A1,A2,B)

or

merge(B1,B2,A)

What we mean by a half copying merge is the merge which is used as follows:

merge(A1,B2,B)

Such use of merge, where the right half of the input data coincides with
the right half of the target location, does not lead to any problems since the
place is freed as the data is copied. It may even be advantageous, as it may
turn out that some of the data in B2 do not need to be touched. It also
results in the possibility of using less memory.

mergesort(table A)

allocate(B1)

copying_mergesort(A2,B1)

copying_mergesort(A1,A2)

merge(B1,A2,A)

free(B1)

The same idea applied to the copying mergesort leads to the following
code:

copying_mergesort(A,B)

copying_mergesort(A2,B2)

copying_mergesort(A1,A2)

merge(A2,B2,B)

Note that the copying mergesort is implemented in terms of itself nad
does not use the mergesort. Some care needs to be taken in order to pre-
serve stability of the alogrithm since the merge used in mergesort should
first copy elements from its second argument in case of equality while the
merge used in copying mergesort should first copy elements from its first
argument in case of equality.

2

3 The C++ implementation

The merge function merges the [p1,k1) and [p2,k2) sorted ranges. The
pointer k2 coincides with the end of the target range [p,k) meaning that
no element in [p2,k2) needs to be moved if all elements from [p1,k1) are
smaller than *p2. It is assumed that both ranges are non empty. When the
range [p1,k1) becomes exhausted the merging is done because all remaining
elements from [p2,k2) are already in place.

template < class T >

inline void

merge (T * p1, T * k1, T * p2, T *k2)

{ T* p=p2 - (k1-p1); //calculate the beginning of the output

while(true)

{if(*p1<=*p2)

{*p++=*p1++;

if(p1==k1) return;

}

else

{*p++=*p2++;

if(p2==k2) break;

}

}

do

*p++=*p1++;

while(p1!=k1);

}

Based on this algorithm a very effcient copying verion of mergesort may
be written sorting the elements form the range [p,k) and placing the result
in the range [t,t+ (k-p)). The right half of the input is sorted (by using
recursively the same algorithm) into the right half of the output range. Then
the left half of the input is range sorted (also recursively) into the right half
of the input range. Then it is merged with our half copying merge with the
numbers alresdy present in the output.

template < class T >

inline void

3

copying_mergesort (T * p, T * k, T * t)

{

if (k > p + 16)

{

T *s = p + ((k - p) >>1);

copying_mergesort (s, k, t+(s-p));

copying_mergesort (p, s, s);

merge (s,s+(s-p),t+(s-p),t+(k-p));

}

else

copying_insertionsort (p, k, t);

}

For small arrays the insertionsort is used as it is the fastest sorting alogrithm
for small n. This also ensures that the merge is never called with empty
regions [p1,k1) or [p2,k2).

The mergesort implementation calls copying mergesort. It sorts the
input range [p,k) ‘in place‘ but requires a buffer to temporarily store bn/2c
array elements:

template < class T >

inline void

mergesort (T * p, T * k)

{

if (k > p + 16)

{

T *s = p + ((k - p) >> 1);

T *buff=new T[k-s];

copying_mergesort (s, k, buff);

copying_mergesort (p, s, k - (s - p));

mergeR (buff, buff + (k - s), k - (s - p), k);

delete []buff;

}

else

insertionsort (p, k, t);

}

To preserve the stability of mergesort we used above a slightly changed
version of merge – we call it mergeR since it assumes that the range [p2,k2)

4

was to the left of [k1,p1) in the input and takes this into account when the
compared elements turn out to be equal (those from [p2,k2) are first copied
to the output).

template < class T >

inline void

mergeR (T * p1, T * k1, T * p2, T *k2)

{ T* p=p2 - (k1-p1);

while(true)

{if(*p1<*p2)

{*p++=*p1++;

if(p1==k1) return;

}

else

{*p++=*p2++;

if(p2==k2) break;

}

}

do

*p++=*p1++;

while(p1!=k1);

}

It is remarkable that this implementation is about 30% faster than the
current STL stable_sort implementation. Is is only 20% slower than quick
sort and runs in quranteed O(n(log(n)) time using additional memory buffer
to accomodate n/2 elements. No unnecessary copying is performed. The
good performance may be attributed not only to the simplicity of the al-
gorithm and the avoidance od unnecessary copying but also to a smaller
memory consumption compared with the traditional implementation which
results in more data fitting into the cache memory.

4 The banchmarking program and the results

of the tests

Ths is still missing.

5

